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Simple central force optimization (SCFO) algorithm is a novel physically-inspired optimiza-
tion algorithm as simulating annealing (SA). To enhance the global search ability of SCFO
and accelerate its convergence, a novel extended/enhanced central force optimization
(ECFO) algorithm is proposed through both adding the historical information and defining
an adaptive mass. SCFO and ECFO are all motivated by gravitational kinematics, in which
the compound gravitation impels particles to the optima. The convergence of ECFO is
proved based on a more complex characteristic equation than SCFO, i.e. the second order
difference equation. The stability theory of discrete-time-linear system is used to analyze
the motion equations of particles. Stability conditions limit their eigenvalues inside the
unit cycle in complex plane and corresponding convergence conditions are deduced related
with ECFO’s parameters. Finally, ECFO are tested against a suite of benchmark functions
with deterministic and excellent results. Experiments results show that ECFO converges
faster than SCFO with higher global searching ability.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In the last decade of the 21st, various nature-inspired heuristic optimization algorithms became the most widely-used
optimization methods [1]. Nature-inspired heuristic methods can be commonly divided into two kinds, biologically-inspired
heuristics and physically-inspired heuristics, as they respectively imitate biological phenomena and physical principles [2,3].
Nowadays biologically-inspired heuristic optimization algorithms are applied widely in different areas [4–16], e.g. Genetic
Algorithm (GA) [4], Differential Evolution (DE) [5], Artificial Immune System (AIS) [6], Ant Colony Optimization (ACO) [7],
Bee Colony Algorithm (BCO) [8], Particle Swarm Optimization (PSO) [9–11], Shuffled Frog-leaping Algorithm [SFLA] [12], Fish
Swarm Optimization (FSO) [9], Cat Swarm Optimization (CSO) [13], Bacterial Foraging Optimization (BFO) [14], Group Search
Optimizer (GSO) [15] and Memetic Algorithms (MA) [16]. It is known that they all simulate biological interactive
mechanisms, e.g. evolutionary, collective, competitive, collaborative, or swarm behaviors. Although certain behaviors are
simulated quite perfectly, their deficiencies are still apparent. That is because the uncertainty of macro biological theories
on micro individuals is evitable, such as randomness [4–16]. Consequently, the processes and results of optimization are
all doubtful [17]; a high computational cost is needed; and a trivial statistical evaluation is indispensable. In addition,
due to true random variables in underlying equations, they completely lack repeatability [18]. However, engineers and
scientists have always been pursuing certain deterministic heuristic optimization algorithms with simple principles for
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various difficult problems. As a result, deterministic heuristics surge as an active research branch of optimization algorithms
recently [17–32,35,36].

Ever since the famous simulating annealing (SA) that was proposed about 1980 [19], physically-inspired heuristic
optimization algorithms have arouse great interests in the area of global optimization [17,18,20–32,35,36]. Nowadays many
novel physically-inspired optimization algorithms have been proposed, e.g. Space Gravitational Optimization (SGO) [2], cen-
tral force optimization (CFO) [17,20–28], Electromagnetism-like Mechanism (EM) [29], Artificial Physics Optimization (APO)
[30], Gravitational Search Algorithm (GSA) [31] and Integrated Radiation Optimization (IRO) [32]. They are all based on
deterministic physical principles. EM simulates the Coulomb’s Force Law associated with electrical charge process. APO,
GSA, SGO and CFO are based on Newton’s law of gravity. Similarly, IRO introduced Einstein’s general theory of relativity
[33,34]. Although their performance may exceed traditional biologically-inspired heuristic optimization algorithms, the
difficulty in traditional heuristic algorithms mentioned above is still persisting. Actually, besides SGO [2] and CFO
[17,20–28,35,36], which inherently conduct deterministic computation, others are all stochastic like the traditional biolog-
ically-inspired random optimization algorithms [4–16]. SGO, CFO do not use any random operators to complete their
optimizations [20–24,26]. Technically speaking, SGO is an embryonic form of CFO, as shown in [2].

Since CFO was proposed by R.A. Formato, it has been applied successfully in various real optimization problems, e.g. elec-
tromagnetic optimization [19], antenna array synthesis [26], training neural networks [27], detection, calibration in drinking
networks [35] and parallel computing [36], which has shown high efficient and accurate as well as GA, PSO or GSO [17,36].
Now CFO is becoming a novel deterministic physically-inspired heuristic optimization algorithm [20–28,35,36]. Given a set
of fixed parameters and an initial distribution, CFO will carry out deterministic search processes and the deterministic results
are obtained for various optimization problems. Different from ‘‘evolve’’ operators in [4,5,37] or knowledge sharing in
[5–16], particles in CFO shares global and individual information through gravitation, i.e. repulsion or attraction. And it con-
verges rapidly to the optima with such a deterministic mechanical process. However, as CFO is proposed by R. A. Formato
recently, most of published works pertain to him [17–25]. In addition, premature avoidance, convergence analysis, estima-
tion of convergence rate, searching behaviors explanation, accelerating convergence and parameter selection are important
problems to be analyzed but till now these works are scarce. In previous works, it can be seen that the original CFO in [16,19–
27] is defined as simple or standard central force optimization (SCFO) algorithm, which is modeled in the first order ordinary
difference dynamics as we proposed in [28].

Although SCFO converges rapidly as a result of the deterministic gravitational actions, it takes too much to compute the
initial distributions [25,27,28,31]. Actually, exploitation of the initial distribution is realized by mass definition, which only
depends on the larger in SCFO. Meanwhile, blindly ignoring others is unavoidable. The mass defined on USF (i.e. unit step
function) on zero misses overall fitness information unexpectedly, which traps SCFO in local optima easily. Briefly, SCFO con-
verges to the optima quickly at the beginning; but once trapped into local optima, it will stagnate and stop searching new
space. So how to utilize the present initial distribution information throughout is crucial to avoid initializing the distribution
in each process. For another thing, on computing the new acceleration in each process, SCFO discards the historical informa-
tion of individuals and neglects the past global information. In essence, considering the characteristic equation, the flying
orbits of particles in SCFO are short and instant responses of their initial positions [28]. It is detrimental to the efficiency
of the global exploration of particles in SCFO.

No Free Lunch theorem [3] and Optimal Contraction Theorem [38] indicate that no optimizers can be optimal for arbitrary
problems and a balance between exploitation and exploration for SCFO is what we desired for any problems. To enhance the
searching ability of SCFO and accelerate its convergence, a novel CFO, named extended/enhanced central force optimization
(ECFO) algorithm, is proposed here. Both local exploitation and global exploration are strengthened and balanced by two dif-
ferent methods, i.e. including each particle’s historical acceleration and defining an adaptive mass. A new definition of mass
is established on the basis of a new USF, which is regulated by an adaptive mean threshold. It expands the gravitational range
of both larger and smaller particles with the manipulation in global exploitation. According to gravitational range analysis,
the initial distribution of each process will be harnessed to its full potential. At the same time, a weighted historical expe-
rience is merged, which leads the order of characteristic equation of ECFO to be the second. So far, the searching behaviors of
ECFO deserve a perfect explanation with a highly efficient global exploration. Clearly, the historical velocity information is
the same as inertia item in PSO [10,11], i.e., the larger inertia weight achieves, the better global exploration is. Therefore, the
exploitation of overall fitness information is expanded and futile searching attempts are avoided at a grand scale. Meanwhile,
the cost of finding optimal initial distribution is reduced accordingly.

As we know, there is no other proof on the convergence of traditional deterministic CFO algorithm except the one in [28].
There are only two kinds of flying behaviors for particles to make a monotonous global searching with power decay or ema-
nate. Using the stability theory of discrete-time-linear system to analyze the motion equations of particles in ECFO, the posi-
tion responses of particles are the second order ordinary difference dynamics. There are ten kinds of particles flying
behaviors at least. More indispensable convergence conditions are demonstrated with respect to the ECFO’s parameters. This
also provides the direction of analyzing and improving SCFO. What’s more, a novel deterministic framework of CFO, named
Dynamic Threshold Optimization (DTO) has been proposed [18]. An adaptive mean threshold is analyzed through gravita-
tional range analysis in section 3.

The remainders of the paper are organized as follows. Brief concepts of SCFO are described in Section 2. Section 3 presents
a novel extended/enhanced CFO, named ECFO. The comprehensive proof of ECFO is given in Section 4. Section 5 demon-
strates the performance of ECFO and SCFO in a suite of benchmark functions. Section 6 presents conclusions and the future
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research works with CFO. Not to confuse with each other, the concepts of ‘‘object’’, ‘‘mass’’, ‘‘individual’’, ‘‘particle’’ and
‘‘probe’’ are the same; while ‘‘generation’’, ‘‘step’’, ‘‘iteration’’ and ‘‘time’’ are the same.

2. Simple central force optimization (SCFO) algorithm

In SCFO, particles are attracted by gravitation based on the defined mass, which is similar to ‘‘virtual force’’ [30,31].
Particles are considered as objects and their performances are measured by the fitness function. In other words, each mass
(object) represents a solution, which is navigated by adjusting the position properly according to the metaphorical
principles.

Set the maximum object function f(X): X 2 RNd ? R. f(X) is the function to be maximized.
Define a bounded feasible region X ¼ fXjxmin

d < xd < xmax
d ; d ¼ 1; . . . ;Ndg. Where Nd is the dimension of object function;

xmin
d ; xmax

d are the bound of dimension d. SCFO algorithm comprises three basic procedures [21–25,27,28]: (a) Initialization.
(b) Acceleration calculation. (c) Motion. A general framework of SCFO is shown in Table 1.

In initialization procedure, a population of particles is created in Nd-dimension space. An initial distribution is formed by
deploying Np/Nd particles uniformly on each ‘‘probe lines’’ determined by distribution factor c [17], where Np denotes the
number of particles. The initial acceleration is set to zero. Under a predefined distribution, SCFO searches the optima with
a deterministic method as described in (b), (c).

The next is acceleration calculation. The compound acceleration of one particle from components in each direction is cal-
culated according to the metaphorical principle of Newton’s law of gravity [27,30,31]. Mass is a user-defined function from
the object function to be maximized. To avoid missing the landscapes of problems, the simplest definition of mass in [30] is
used. In gravitational field of particle p, the mass of particle k at j can be expressed:
Table 1
An algo

1 Shrin
U Mk
j�1 �Mp

j�1

� �
Mk

j�1 �Mp
j�1

� �a
; k ¼ 1; . . . ;p� 1;pþ 1; . . . ;Np ð1Þ
SCFO’s mass USF:
UðzÞ ¼
1; z P 0
0; else

�
ð2Þ
Where U() is an USF on zero, Mp
j�1 ¼ f xp;j�1

1 ; xp;j�1
2 ; . . . ; xp;j�1

Nd

� �
is the object function value of particle p at j � 1, j 2 {1, . . . ,Nt}, Nt

are total iterations. For other mass definitions, please refer to [30] with different performances. Generally, acceleration of
particle p at step j � 1 is presented.
rithmic description of the SCFO algorithm.

ks the decision space to the neighborhood of best particle [17]. To avoid premature and stagnation, we abandons it here.
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Where A
!k;p

j�1 is an accelerate vector of particle k toward to particle p, k = 1 and k – p. In Eq. (3), G, a and b do not represent the
concrete gravitational fundamentals.

The final procedure is Motion. According to the acceleration calculated previously, the positions and ‘‘velocities’’ of par-
ticles are updated based on Newton’s motion laws [27,30,31]. If acceleration A

!p
j�1 is exerted, particle p will move from X

!p
j�1

to X
!p

j according to the motion equation.
X
!p

j ¼ X
!p

j�1 þ 0:5� A
!p

j�1Dt2; j P 1 ð4Þ
Where Dt represents the interval, and 0.5 illustrates the kinematic metaphor. The positions are updated based on last ‘‘mass’’
information as a deterministic gradient algorithm. Movement of each particle is restricted to the bounded feasible region.
However, when some ‘‘fly’’ out, a necessary retrieving mechanism in [17] is used to act on them, i.e. replacing errant particles
according to the last positions.

After updating the positions of all particles by sharing the gravitational information, the object function is updated at the
new positions. Because under a predefined initial distribution SCFO can definitely reach a stable state after computing the
best, it will update a new initial distribution to restart until the global best or a desirable solution is reached. The conver-
gence conditions of SCFO in [28] have revealed that it will converge to the optima that have searched so far, which is not
worse than the predefined one in initial distributions.

3. The Extended/Enhanced CFO (ECFO) algorithm

ECFO utilizes a new landscape of mass by an USF based on an adaptive mean threshold. It expands the gravitational
ranges of particles according to the following gravitational range analysis; the maximum utilization of initial distributions
can be made; meanwhile it avoids futile attempts for a local exploitation. On the other hand, ECFO includes a weighted his-
torical experience by adding historical acceleration. A complex dynamic mechanical characteristic of particles flying in deci-
sion space is revealed in Remark 3.4 and proved in Section 4.

Three kinds of masses defined in theoretical physics are active gravitational mass, passive gravitational mass and inertial
mass [33,34]. If only consider larger objects, the mass in SCFO is positive, which is similar to what the weak equivalence prin-
ciple shows in [34]. Conceptually all objects can attract or repel one another, and the force between them is interactive. A
particle with positive mass will possess a positive gravitational field to attract others. Comparatively a particle with passive
mass will possess a passive gravitational field to repel others. The inertia mass is against the motion and makes objects mov-
ing slowly.

In SCFO, the mass is based on relative fitness value [21–25] instead of the passive gravitational mass. To make a distinct
comparison, a brief format refers to Eqs. (1) and (2). Only when the fitness is larger than particle p, will the attractive grav-
itation be exerted on p. SCFO converges to local optima quickly so as to lose fitness information overall. An important mech-
anism in SCFO is that the best cannot be attracted by others. What is more, in order to reach the overall optima, a larger
computation for updating initial distribution is always indispensable.

Unlike the fixed positive mass in SCFO, ECFO utilizes a new landscape of mass by defining an USF, which is based on an
adaptive mean threshold. The total relative masses will adjust it to different particles distributions adaptively. An adaptive
USF in the definition of mass for particle p can be presented.

The adaptive mean threshold:
St ¼ 1
Np � 1

XNp

k¼1
k–p

Mk
j�1 �Mp

j�1

� �
ð5Þ
ECFO’s new mass USF:
UðzÞ ¼
1; z P �St
0; else

�
ð6Þ
Therefore, it includes three gravitational mass with three gravitational actions, attraction, repulsion and persistence. It
expands the gravitational range of both larger and smaller particles as analyzed in followings with the exploitation of overall
mass information. To explain the characteristics of ECFO compared with SCFO, two typical cases are shown in Figs. 1 and 2,
where a larger back cycle corresponds to greater fitness, shadow cycles are implicit. Gravitational range is an important met-
ric of the exploitation for larger particles or smaller particles. Consider the range of gravitational field with both the new
defined mass in ECFO and the traditional one. The limits of the gravitational ranges are the best one and the worst one. Here,
the best or worst denote one particle owns the maximum or minimum fitness with a certain particles distribution. Now, four
definitions are given.



Fig. 1. Expanding or shrinking gravitational range of M0.

Fig. 2. Expanding or shrinking gravitational range of M0.
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Definition 3.1 (Maximum Gravitational Range (MaxGR)). The maximum gravitational range of a particle is the maximum
distance from the others, in which the gravitational attraction or repulsion is valid to the particle. h
Definition 3.2 (Minimum Gravitational Range (MinGR)). The minimum gravitational range of a particle is the minimum dis-
tance from the others, in which the gravitational attraction or repulsion is valid to the particle. h
Definition 3.3 (Equivalent Gravitational Range (EqGR)). The equivalent gravitational range of a particle is the distance from
the others, in which the fitness is equivalent to its. If such others exist, or not only one, select the maximum range as EqGR; if
not exist, EqGR is arithmetic mean of MinGR and MaxGR (exists a visual equivalent one). h
Definition 3.4 (Gravitational Range (GR)). The gravitational region of a particle is the distance between MaxGR’s orMinGR’s
circle andEqGR’s circle or both. h
Theorem 3.1. In SCFO, under a certain particles distribution, for the best, exists GR = MinGR = MaxGR = EqGR = ;; for the worst,
exists GR = X.
Proof. According to Eqs. (1) and (2) in SCFO, the best keeps still, not be attracted or repelled by others. So, its gravitational
range is empty. Another extreme is that the worst will be affected by others. Maximum gravitational range of the worst is the
distance to the furthest, namely overall searching space. Minimum gravitational range of the worst is the distance to the
nearest particle. Thus, the worst probably walk though the total feasible region. h
Theorem 3.2. In ECFO, under a certain particles distribution, for the best, its EqGR equals to the mean of MinGR and MaxGR, which
exists non-empty; for the worst, exists GR = X.
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Proof. According to Eqs. (3), (5) and (6) in ECFO, the best will be attracted or repelled by others. Both MinGR and MaxGR exist
non-empty. So, the gravitational range of the best is nonempty. Another extreme is the same as SCFO. Maximum gravita-
tional range of the worst equals to one in SCFO. Minimum gravitational range of the worst may shrink to the nearest in SCFO.
Thus, the worst may walk though the region as SCFO at least. h
Remark 3.1 (The best and the worst in both SCFO and ECFO). For the best in SCFO, it persists until a better one is found as the
elitist preservation in GA [4]. Although the preservation can accelerate its convergence, it always results in premature for
multimodal functions. To relax the best, an adaptive mass in ECFO enables it to tune their positions locally for the better.
For the worst, although the gravitational range of both SCFO and ECFO is X, maximum gravitational range in ECFO varies
adaptively to the overall fitness information as Eq. (5) not the fixed in SCFO. As a result, the local exploitation and global
exploration of SCFO are augmented in ECFO. h

Two typical cases are about the mediate, which principally determine the convergence speed and the quantity of the opti-
mal. The maximum utilization of initial distributions is largely up to them. Proper adjustment of mediate gravitational
ranges is crucial for balancing exploration and exploitation. Figs. 1 and 2 show two extreme 2-D CFO systems, where
M0,M1,M2 and M3 represent four particles with M1 < M0 = M2 < M3. Without loss of generality, other particles are simplified
as M3, which denotes the particles whose fitness is larger than M0; and M1 denotes particles with fitness smaller thanM0.
Considering how others affect the motion of M0, GR, MaxGR, MinGR, EqGR are presented. To compare with SCFO, an equivalent
gravitational range of M0 is drawn as EqGR = r2 in Figs. 1 and 2.

Remark 3.2 (A Comparison in Fig. 1). According to Eqs. (1) and (2) in SCFO, as only M3 > M0, exists
MinGR ¼ MaxGR ¼ r1; EqGR ¼ r2; ð7Þ
GR ¼ EqGR�MaxGR ¼ r2 � r1: ð8Þ
Accordingly M0 can be trapped into the position of M3 easily based on the local mass landscape in SCFO in despite of a nearest
and rapid movement. Comparatively, ECFO can access the overall fitness information to get a mean mass landscape. Accord-
ing to Eqs. (5) and (6), there are two situations: (i) and (ii).

(i) As jM3 �M0j > jM1 �M0j, thus St > 0. MaxGR(M0) expands from r2 in SCFO to r002 in ECFO with a wider mass landscape,
exists
MinGR ¼ r1;MaxGR ¼ r002; EqGR ¼ r2: ð9Þ
GR ¼ MaxGR�MinGR ¼ r002 � r1: ð10Þ
(ii) As jM1 �M0j > jM3 �M0j, thus St < 0. MinGR(M0) shrinks from r2 in SCFO to r02 in ECFO to avoid a relative smaller local
minimum M1, exists
MinGR ¼ r1;MaxGR ¼ r02; EqGR ¼ r2: ð11Þ
GR ¼ MaxGR�MinGR ¼ r02 � r1: ð12Þ
Certainly if they are equivalent, GR(M0) maintains as one in SCFO. In conclusion, M0 expands its gravitational range to avoid
being trapped in local optima as M3 in Eq. (10) and shrinks it to prevent falling into the worst as M1 in Eq. (12). h
Remark 3.3 (A Comparison in Fig. 2). A similar analysis of Fig. 2 is described. According to Eqs. (1) and (2), exists
MaxGR ¼ r3;MinGR ¼ EqGR ¼ r2: ð13Þ
GR ¼ MaxGR� EqGR ¼ r3 � r2: ð14Þ
According to Eqs. (5) and (6), exists two situations: (i) and (ii).

(i) As jM3 �M0j > jM1 �M0j, thus St > 0. M0 may search carefully in range r01 or r1 to r3 not as r2 to r3 in SCFO, because M1

may slow it to jump out of range r2, exists
MaxGR ¼ r3;MinGR ¼ r01; EqGR ¼ r2: ð15Þ
GR ¼ MaxGR�MinGR ¼ r3 � r01: ð16Þ
(ii) As jM1 �M0j > jM3 �M0j, thus St < 0. MaxGR(M0) expands from r3 in SCFO to r03 in ECFO to avoid a relative smaller local
minimum M1, exists
MaxGR ¼ r03;MinGR ¼ EqGR ¼ r2: ð17Þ
GR ¼ MaxGR�MinGR ¼ r03 � r2: ð18Þ
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Therefore, M0 expands its gravitational range to avoid falling into the worst as M1 and get a more careful local search to avoid
premature. h

From Remarks 3.2 and 3.3, USF in ECFO as Eqs. (5) and (6) improves the mass landscape in SCFO. As a result, it expands or
shrinks the gravitational range adaptively to avoid premature or the worst and enhances both the local and global search
ability. As in each process the particles distribution can be treated as initial distribution, above analysis works for any time.
So the initial distribution is harnessed to its potential. A dynamic balance between local exploitation and global exploration
is achieved. So the ‘‘Extend’’ or ‘‘Enhanced’’ characteristic of ECFO is apparent compared to SCFO.

To be further, another big difference between SCFO and ECFO is the order of the characteristic equation of particles mo-
tion. It can be seen easily that whether the historical velocity item exists in Eq. (4) or not. A classic or basic description of
SCFO you can find in [21–25] and its convergence analysis you can find in [28], pseudo random CFO (PR-CFO) [22] and
parameter-free CFO (PF-CFO) [24] are also based on such a framework. Although Newton’s motion law shows velocity item
is necessary, SCFO does not adopt it for simplicity [17,21–28]. The historical velocity information, i.e. last initial ‘‘velocity’’, is
the same as inertia item in PSO. The larger inertia weight achieves the better global exploration [10,11], which changes the
dynamic searching process intrinsically. ECFO includes a weighted historical experience by adding historical acceleration.
X
!p

j ¼ X
!p

j�1 þ A
!p

j�2Dt þ 0:5� A
!p

j�1Dt2 ð19Þ
Remark 3.4 (Complex Dynamics). Following Theorem 4.1 demonstrates that the flying orbits of particles in ECFO are more
complex than SCFO, i.e. the second order difference dynamic processes. As we all known, the main dynamic characteristics of
a second order difference system are emanate amplitude oscillate, equivalent amplitude oscillate, attenuate amplitude
oscillate, power decay and power amplify. So particles in ECFO own much more searching behaviors than SCFO. To be exact,
two opposite mechanical actions, attraction and repulsion will duplicate such searching behaviors. What’s more, although
particles motion in ECFO is a linear-time-invariant difference equation at each step, the property of varying parameters of
characteristic equation will complicate the simple deterministic searching processes. h
4. Convergence analysis

The convergence proof of ECFO is developed here. It is crucial for understanding the complex dynamic characteristics and
making a further improvement. It reveals the necessary convergence conditions under which ECFO is guaranteed to converge
to the optima. It brings to light that its global convergence mainly depends on the utilization of initial distributions. This
proof also encourages further work of analyzing and improving the framework of CFO [18,21–25,27,28], especially DTO in
[18].

Because ECFO is inherently deterministic under a predefined initial distribution, the deterministic sequence convergence
definition is used directly.

Definition 4.1 (Deterministic Sequence Convergence [30]). A deterministic discrete-time sequence {X(j)}, j = 0,1, . . . of
scalars or vectors X(j) converges to the constant value X⁄ if the limit exists: limt?1X (j) = X⁄ . The limit X⁄ may not be a prior-
known solution. h

Following symbols are in accordance with definitions before. Without loss of generality, particle i is selected arbitrarily
and a 1-D ECFO is analyzed, Nd = 1. Assume the feasible region is always positive.

Theorem 4.1. ECFO’s motion is a secondary difference dynamic process in essence.
Proof. According to Eq. (6), define Mi = {kjf(Xk) � f(Xi) > �St, k = 1, . . . ,Np}. Eq. (3) is rewritten to
AiðjÞ ¼ G �
X
k2Mi

½f ðXkÞ � f ðXiÞ�a

kXk � Xikb
ðXkðjÞ � XiðjÞÞ ¼ G �

X
k2Mi

½f ðXkÞ � f ðXiÞ�a

kXk � Xikb
XkðjÞ � G �

X
k2Mi

½f ðXkÞ � f ðXiÞ�a

kXk � Xikb
XiðjÞ: ð20Þ
With the following definitions
/iðjÞ ¼ G �
X
k2Mi

½f ðXkÞ � f ðXiÞ�a

kXk � Xikb
XkðjÞ; ð21Þ

hi ¼ G �
X
k2Mi

½f ðXkÞ � f ðXiÞ�a

kXk � Xikb
: ð22Þ
Eq. (3) is updated to
AiðjÞ ¼ /iðjÞ � hi � XiðjÞ: ð23Þ
Together with Eq. (19), SCFO system equations are obtained. (Dt – 0 is obvious.)
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AiðjÞ ¼ /iðjÞ � hi � XiðjÞ; ð24Þ

Xiðjþ 1Þ ¼ XiðjÞ þ
1
2

AiðjÞ � Dt2 þ Aiðj� 1Þ � Dt: ð25Þ
Assume that the fitness landscape is so smooth that hi, /i keep stable in two intervals. Substitute Eq. (24) into Eq. (25) to
eliminate Ai(j) and Ai(j � 1), one has
Xiðjþ 1Þ þ 1
2
� Dt2hi � 1

� �
XiðjÞ þ hiDt � Xiðj� 1Þ ¼ 1

2
/iðjÞDt2 þ /iðj� 1ÞDt: ð26Þ
Because /i and hi are constants as assumed against particle i at each generation, Eq. (26) is a second order ordinary difference
equation between step j and j � 1. h

To access to following analysis fluently, eigenvalues conditions are partially cited as Theorem 4.2.

Theorem 4.2 (Eigenvalues Conditions [39]). The discrete-time linear-time-invariant system is (i) marginally stable iif all
eigenvalues of system have magnitude smaller than or equal to 1; (ii) asymptotically and exponentially stable iif all eigenvalues of
system have magnitude strictly smaller 1; (iii) unstable iif at least one eigenvalues of system has magnitude larger than 1 or
magnitude equal to 1. h

According to Theorem 4.2, the stability condition of discrete-time-linear system is that its eigenvalues lie inside the unit
cycle on the complex plane. Obviously solutions of Eq. (26) converge to a deterministic limit. The necessary convergence
conditions are proved in Theorem 4.3. To simplify Theorem 4.3, three lemmas are taken into forwards.

The characteristic equation of Eq. (26) is
k2 þ 1
2
� Dt2hi � 1

� �
kþ hiDt ¼ 0: ð27Þ
According to the eigenvalues condition, i.e. the absolute value of eigenvalues k1, k2 is less than 1.
jk1;2j ¼
1
2
� 1� 1

2
� Dt2hi

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� Dt2hi � 1

� �2

� 4 � hiDt

s						
						 < 1: ð28Þ
Obviously Dt – 0, and set hi – 0. There three cases are analyzed in Lemmas 4.1, 4.2, and 4.3.

Lemma 4.1. Given Dt – 0 and hi – 0, for Eq. (27), exists two equivalent eigenvalues inside unit cycle in complex plane, which
means Eq. (26) is stable, iif they satisfy one condition of followings

(i) hi ¼ 2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ; Dt > 0 _ �2 < Dt < 0;
(ii) hi ¼ 2 � ðDtþ4Þþ

ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ; Dt > 6.
Proof. Actually, it requires Eq. (27) has two equivalent eigenvalues. Thus 1
2 � Dt2hi � 1

 �2 ¼ 4 � hiDt, that is
1
4
� Dt4h2

i � ðDt2 þ 4DtÞhi þ 1 ¼ 0 ð29Þ
Regard hi as unknown in Eq. (29). If Dt P �2, exists two roots s1;2 ¼ 2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 .
According to the stability condition, for Eq. (27), one has
jk1j ¼ jk2j ¼
1
2

1� 1
2
� Dt2hi

				
				 < 1: ð30Þ
Then to simplify Eq. (30) with Eq. (29), thus
ffiffiffiffiffiffiffiffiffiffiffiffi
4Dthi
p

< 2. So, there are two possible cases with Eq. (30), (a) and (b).

(a) If �2 6 Dt < 0, and hi < 0, only exists 1
Dt < s2 < 0.

(b) If Dt > 0, and hi > 0, exists 0 < s2 <
1
Dt. Only if Dt > 6, exists 0 < s1 <

1
Dt. Combine (a) and (b), lemma 1 is obtained. h
Lemma 4.2. Given Dt – 0 and hi – 0, for Eq. (27), exists two complex eigenvalues inside unit cycle in complex plane, which means
Eq. (26) is stable, iif they satisfy one condition of followings

(i) 1
Dt < hi < 2 � ðDtþ4Þ�

ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ; �2 6 Dt < 0;

(ii) 2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 < hi <
1
Dt ; 0 < Dt < 6;

(iii) 2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 < hi < 2 � ðDtþ4Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ; Dt P 6.
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Proof. Actually, it requires Eq. (27) has two complex eigenvalues with the same magnitude. Consider Eq. (28), as
1
2 � Dt2hi � 1

 �2

< 4 � hiDt, exists
1
4
� Dt4h2

i � ðDt2 þ 4DtÞhi þ 1 < 0: ð31Þ
If D < 0 of Eqs. (29), (31) is impossible. If D P 0, that is Dt P �2, Dt – 0. Consider two roots of Eq. (29), two situations (a) and
(b) are given with Eq. (31).

(a) If �2 6Dt < 0, exists s1 < hi < s2;
(b) If Dt > 0, exists s2 < hi < s1.

Actually, stability condition requires jk1j ¼ jk2j < 1()
ffiffiffiffiffiffiffiffiffiffiffiffi
4hiDt
p

< 2. Thus (a) and (b) corresponds situations (c) and (d)
respectively.

(c) If�2 6 Dt < 0, exists 1
Dt < hi < 0. With 1

Dt > s1 , combine (a), the stability condition requires 1
Dt < hi < s2 . The condition (i)

is obtained;
(d) If 0 < Dt, exists 0 < hi <

1
Dt, two intervals (d1) and (d2) are considered.

(d1) If 0 < Dt < 6, with 1
Dt < s1, combine (b), the stability condition requires s2 < hi <

1
Dt. The condition (ii) is obtained;

(d2) If Dt P 6, with 1
Dt P s1, combine (a), the stability condition requires s2 < hi < s1. The condition (iii) is obtained. So far

three conditions are obtained completely. h
Lemma 4.3. Given Dt – 0 and hi – 0, for Eq. (27), exists two different real eigenvalues inside unit cycle in complex plane, which
means Eq. (26) is stable, iif they satisfy one condition of followings

(i) 0 < hi <
2

Dt2 ;
2

Dt2 < hi <
4

Dt2�2Dt
; Dt < �2;

(ii) hi < 2 � ðDtþ4Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ;2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 < hi < 0; �2 6 Dt < 0;

(iii) 0 < hi < 2 � ðDtþ4Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 ; Dt > 0;

(iv) 2 � ðDtþ4Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 < hi; 0 < Dt < 2;

(v) 2 � ðDtþ4Þþ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt3 < hi <
4

Dt2�2Dt
; Dt > 2.
Proof. Actually, it requires Eq. (27) has two different real eigenvalues. Consider Eq. (28), as 1
2 � Dt2hi � 1

 �2

> 4 � hiDt, exists
1
4
� Dt4h2

i � ðDt2 þ 4DtÞhi þ 1 > 0: ð32Þ
For Eq. (29), it is assigned into two aspects, D < 0 and D P 0 i.e. (a) and (b).

(a) If D < 0, that is Dt < �2, hi in Eq. (32) exists anyway. By inspecting Eq. (29), exists four situations (a1), (a2), (a3) and
(a4).

(a1) If hi > 0, and 1� 1
2 � Dt2hi > 0, exists k2 < 0 < k1,jk1j > j k2j, so the stability condition requires k1 < 1.

(a2) If hi > 0, and 1� 1
2 � Dt2hi < 0, exists k2 < 0 < k1,jk1j < j k2j, so the stability condition requires k2 > �1.

(a3) If hi < 0, and 1� 1
2 � Dt2hi > 0, exists k1 > k2 > 0, so the stability condition requires k1 < 1.

(a4) If hi < 0, and 1� 1
2 � Dt2hi < 0, exists k2 < k1 < 0, so the stability condition requires k2 > �1.

Consider (a1) and (a3), exists 0 < k1 < 1. Note Dt < �2, exists hi > 0, so (a3) is excluded. In (a1), note 1� 1
2 � Dt2hi > 0, the

stability condition requires
0 < hi <
2

Dt2 ; Dt < �2: ð33Þ
Next for (a2), exists �1 < k2 < 0. Obviously, exists hi <
6

Dt2, otherwise it is false. Note Dt < �2, exists hi <
4

Dt2�2Dt
ð> 0Þ. So, for

(a2), exists 0 < hi <
4

Dt2�2Dt
, note 1� 1

2 � Dt2hi < 0 and 4
Dt2�2Dt

< 6
Dt2 ðDt < �2Þ, the stability condition requires
2
Dt2 < hi <

4
Dt2 � 2Dt

; Dt < �2: ð34Þ
Last for (a4), hi < 0, note 1� 1
2 � Dt2hi < 0, which are contradict apparently.

The condition (i) is obtained from Eqs. (33) and (34).

(b) If D P 0, exists Dt P �2. By inspecting Eq. (32), note Dt P �2, exists two situations (b1) and (b2).
(b1) If � 2 6 Dt < 0, exists hi < s1(<0), hi > s2(<0);
(b2) If 0 < Dt, exists hi < s2(>0), hi > s1(>0).

(b1) For hi < s1, exists 0 < � 4þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt < 1� 1
2 Dt2hi . Consider Eq. (28), exists k1 > k2 > 0, and the stability condition requires

k1 < 1, note �2 6 Dt < 0, so hi < 0. Thus the stability condition requires
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hi < 2 � ðDt þ 4Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt þ 16
p

Dt3 ; �2 6 Dt < 0: ð35Þ
For hi > s2 . If s2 < hi < 0, exists 1� 1
2 Dt2hi > 0, thus k1 > k2 > 0, and the stability condition satisfies k1 < 1. If 2

Dt2 > hi > 0, exists

1� 1
2 Dt2hi > 0, thus k1 > 0 > k2,jk1j > j k2j, and the stability condition satisfies k1 < 1. If 2

Dt2 < hi , exists 1� 1
2 Dt2hi < 0, thus k1 -

> 0 > k2,jk1j < j k2j, and the stability condition satisfies k2 > �1. Among these situations, if k1 < 1, exists hi < 0, so the stability
condition requires
2 � ðDt þ 4Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt þ 16
p

Dt3 < hi < 0; �2 6 Dt < 0: ð36Þ
If 0 > k2 > �1, exists hi <
4

Dt2�2Dt
, note hi <

6
Dt2 and 4

Dt2�2Dt
< 6

Dt2 ð�2 6 Dt < 0Þ, exists hi <
4

Dt2�2Dt
;�2 6 Dt < 0. However,

4
Dt2�2Dt

< 2
Dt2 in � 2 6Dt < 0, so it is false.

The condition (ii) is obtained from Eqs. (35) and (36).

(b2) For hi < s2, exists 0 < � 4�
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt < 1� 1
2 Dt2hi . If 0 < hi < s2, exists k1 > 0 > k2,jk1j > jk2j, so the stability condition requires

k1 < 1. So, hi > 0 is obtained. If hi < 0, exists k1 > k2 > 0, and stability condition requires k1 < 1. With � 2
Dt2 < hi, exists

hi > 0, which contradicts the assumption. So the stability condition requires
0 < hi < 2 � ðDt þ 4Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt þ 16
p

Dt3 ; Dt > 0: ð37Þ
For hi > s1 , exists � 4þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8Dtþ16
p

Dt > 1� 1
2 Dt2hi. With k1 < 1, exists k2 < k1 < 0, and the stability condition requires k2 > �1. With

k2 > �1, if 0 < Dt < 2, exists 4
Dt2�2Dt

ð< 0Þ < hi, else if D t > 2, exists hi <
4

Dt2�2Dt
ð> 0Þ. Note for Dt > 2, exists 4

Dt2�2Dt
> s1 anyway,

so it is false.

Therefore, the stability condition requires
2 � ðDt þ 4Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt þ 16
p

Dt3 < hi; 0 < Dt < 2: ð38Þ

2 � ðDt þ 4Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dt þ 16
p

Dt3 < hi <
4

Dt2 � 2Dt
; Dt > 2: ð39Þ
Obviously, Eqs. (37)–(39) correspond to conditions (iii), (iv) and (v), respectively. So far all conditions are deduced. h
Theorem 4.3. Under conditions of Lemmas 4.1, 4.2 and 4.3, for Eq. (26), {Xi(j), j = 1,2, . . .} will converge to Xbest
i .
Proof. According to conditions from three lemmas, eigenvalues of Eq. (27) lie inside the unit cycle in complex plane. For all
particles, they will converge to limit points, limj!1XiðjÞ ¼ X�i ; i ¼ 1;2; . . . ;Np. To take the limit on both sides of Eq. (26), note
limj!1/iðjÞ ¼ /�i ; i ¼ 1;2; . . . ;Np , one has
X�i þ
1
2
� Dt2hi � 1

� �
X�i þ hiDt � X�i ¼

1
2

Dt2 þ Dt
� �

/�i ð40Þ
To simplify Eq. (40) as
hi � X� ¼ /�i : ð41Þ
Substitute Eqs. (21) and (22) into Eq. (41), one has
G �
X
k2Mi

f X�k

 �

� f X�i

 �� a

X�k � X�i
�� ��b X�i ¼ G �

X
k2Mi

f X�k

 �

� f X�i

 �� a

X�k � X�i
�� ��b X�k: ð42Þ
As assumed particles’ positions are always positive. To take the log on both sides of Eq. (42)
X
k2Mi

a � ln f X�k

 �

� f X�i

 �		 		
 �

� b ln X�k � X�i
�� ��
 �

þ ln X�i

 �� �

¼
X
k2Mi

a � ln f X�k

 �

� f X�i

 �		 		
 �

� b ln X�k � X�i
�� ��
 �

þ ln X�k

 �� �

ð43Þ
The number of elements in set Mi is cited by mi . Eq. (43) is simplified as
X
k2Mi

ln X�i

 �

¼
X
k2Mi

ln X�k

 �

) ln X�i

 �

¼
P

k2Mi
ln X�k

 �

mi
: ð44Þ



Table 2
Maximized results of unimodal benchmark functions.

Test functions Global optima SCFO ECFO

Particles c Iterations Optima Particles c Iterations

Unimodal functions F1 0 �7.9891e�7 10 0.6 351 �7.5137e�7 7 0.6 351
F2 0 �7.6076e�7 6 0.18 481 �4.8954e�7 8 0.54 511
F3 0 �9.821e�7 20 0.6 401 �9.7713e�7 26 0.54 371
F4 0 �7.932e�7 8 0.72 531 �9.7203e�7 14 0.48 571
F5 0 �8.5144e�7 10 0.54 361 �4.3433e�5 28 0.6 291
F6 0 �4.4384e�7 14 0.6 401 �2.2016e�7 10 0.54 351
F7 0 4.655e�5 6 0.18 382 �2.525e�5 6 0.06 111

Table 3
Maximized results of multimodal benchmark functions.

Test functions Global optima SCFO ECFO

Optima Particles c Iterations Optima Particles c Iterations

Multimodal functions F8 837.9658 837.9657 18 0.96 371 837.9657 18 0.06 291
F9 0 �5.6063e�5 12 0.66 361 �7.5095e�5 12 0.54 271
F10 0 �8.0326e�5 8 0.42 391 �6.8426e�5 8 0.84 411
F11 0 �4.2729e�5 14 0.66 351 �4.6279e�5 24 0.12 391
F12 0 �3.8558e�5 18 0.66 391 �1.6471e�5 36 0.48 471
F13 0 �4.625e�5 6 0.54 311 �6.1817e�5 18 0.54 371
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The limit states X�k; k 2 Mi reach the optima Xbest
i simultaneously, that is X�1 ¼ X�2 ¼ � � � ¼ X�Mi

¼ Xbest
i . Otherwise, according to

Eqs. (24) and (25), exists limj?1Ai(j + 1) – 0, which contradicts the stability case (limj?1Ai(j + 1) = 0).
Therefore, Eq. (44) is rewritten as
ln X�i

 �

¼ ln X�k

 �

¼ ln Xbest
i

� �
; k 2 Mi:
So {Xi(j), j = 1,2, . . .} will converge to Xbest
i . h
Remark 4.1 (The Convergence of ECFO). In retrospect SCFO preserves the best as analyzed in [28] until find the better to
update it. Although it converges rapidly, the optimum is usually local. It will be renewed until check on different particles
distributions throughout. However, ECFO seems to process the same routines, but the advantages of initial distributions are
maximized by the adaptive mass.

For simplicity, no better one besides one which in predefined initial distribution will be found is assumed. The best is kept
still in SCFO as the global optima. However, a better one may be found by adaptively expanding or shrinking gravitational
range of the best in manipulation of global fitness information. To say the least, the final best in Theorem 4.3 is not the best in
initial distribution as SCFO. Therefore, the initial distribution of each process in ECFO is harnessed to its full potential;
meanwhile the initializations of particles distribution are reduced greatly. What’s more, the searching behaviors of particles
in ECFO are more complex than SCFO as in Remark 3.4, in which the global exploration will be enhanced adequately. h
5. Numerical experiments

In this section, the performance of ECFO is compared with SCFO using a suite of the former thirteen benchmark functions
in [40] with two dimensions. Because of SCFO’s maximum, a negative sign is applied on them to get maximum benchmark
functions. The test functions include a range of different decision space topologies, which provide a general comparison.

Unlike the different results obtained in each run in scholastic algorithms, SCFO gets deterministic and accurate results
under predefined parameters no matter how many times running [17,25,27,40,41]. The parameters of SCFO and ECFO are
set the same. Total particles are 2 6Np6 20 increased by 1 each time. The maximum iteration times are Nt = 1000 and
Dt = 1. The initial distribution is a uniform distribution on ‘‘probes line’’, which is an axis frame based on a new origin on
diagonal defined by c [17]. Smaller c designates less initial distribution computation. The initial c is set to 0.06, and increas-
ing step is set as 0.06. Another parameter is retrieve factor Frep [17], initialize 0.06, and increase by 0.06.

Define xmax = (f(Xmax) � f(Xmin))a, vmin = min{kXmax � Xminkb}, G in SCFO is updated by the 4vmin/Np �xmax adaptively
[28]. The default G, a, b is 2.

Thirteen benchmark functions are divided into unimodal functions (F1 � F7) and multimodal functions (F8 � F13). For uni-
modal functions, the convergence rate is more important than the final results because special methods are designed to opti-
mize them. However, for multimodal functions, the final results are much crucial as it reflects the ability of algorithms to



Fig. 3. Comparison between SCFO and ECFO on F8 � F13. The vertical axis is best function value, and the horizontal axis is the number of iterates. The solid
lines indicate the results of ECFO. The dotted lines indicate the results of SCFO.
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jump out from local optima or the worst. So, both the results are shown in Tables 2 and 3 and only convergence curves of
F8 � F13 are presented in Fig. 3.

The data marked both of bold and italic in Table 2 or Table 3 indicates a better performance. The data only marked bold
indicates a similar performance on this item. Table 2 shows the comparison between SCFO and ECFO on 2-D unimodal
benchmark functions. For the major of unimodal functions, SCFO performs well. F6 is a discontinuous step function, and
F7 is a noisy quadratic function, ECFO gets a higher accuracy and convergence rate than SCFO on them with a smaller c.
For others, ECFO exhibits a better performance on accuracy or low computation cost or both.

For scholastic algorithms, F8 � F13 is a set of difficult multimodal functions. Table 3 shows the comparison between SCFO
and ECFO on them. Clearly, ECFO achieves a much better on minimum distribution factor c with low computation cost as in
Table 3. And a rapid convergence rate is obvious which is shown in Fig. 3. Hence, ECFO performs a less distribution compu-
tation than SCFO as well in accuracy.

Fig. 3 shows the typical difference of convergence speed between SCFO and ECFO. As raised in section 3, ECFO shrinks its
gravitational range on F8 and F11 to get a faster convergence compared with SCFO. Although ECFO expands its gravitational
range on F9 and F10 for global searching, it converges faster than SCFO before. ECFO oscillates at the beginning on F13. After
such an unstable movement, ECFO finds the optima quickly. While both SCFO and ECFO are on the stable region on F12, ECFO
converges to the optima steadily.

At last, the ability of ‘‘extended/enhanced’’ of ECFO is emphasized on expanding the gravitational range for global search-
ing and shrinking the gravitational range for avoiding premature or the worst. By improving the mass landscape adaptively
ECFO gains global fitness information to converge a much better result until reach to the actual global optima.

6. Conclusions and future works

ECFO is another novel physically-inspired heuristic deterministic optimization algorithm with more complex searching
behaviors than conventional SCFO. ECFO enhances the performance of SCFO in two ways, i.e. including individual historical
acceleration and defining an adaptive mass. Utilizing a new landscape of mass according to an USF based on the adaptive
mean threshold, ECFO improves the exploitation of overall mass information. Merging weighted historical experience
through adding historical acceleration item, the flying orbits of particles in SCFO become more complex and its global search
ability is enhanced effectively. What’s more, the convergence proof reveals the necessary convergence conditions of ECFO,
under which it is guaranteed to converge to the optima under a predefined initial distribution. At last, to make a comparison,
a suite of benchmark functions are chosen for maximizing. Experimental results show that ECFO converges faster with lower
initial distribution computation cost than SCFO.

Because of the deterministic mechanism in CFO, the system stability theory is available to ECFO. Although its convergence
is significant, a balance of between convergence and divergence should be emphasized. This point is similar to a balance
between exploration and exploitation in traditional swarm intelligent algorithms or evolutionary algorithms. The key is
how to organize the convergence condition and divergence condition to get a proper optimization performance for different -
landscapes of optimization problems [28]. Besides, the gravitational metaphors are fascinating. Some other physical
phenomena, e.g. dark energy, black hole and supernova, may implicate new physically-inspired heuristics. How to sim-
plify such principles to propose or improve physically-inspired optimization algorithms is a significant and novel research
work.
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